341 research outputs found

    A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data.

    Get PDF
    BACKGROUND: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. RESULTS: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. CONCLUSIONS: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data

    SVAMP: sequence variation analysis, maps and phylogeny.

    Get PDF
    SUMMARY: SVAMP is a stand-alone desktop application to visualize genomic variants (in variant call format) in the context of geographical metadata. Users of SVAMP are able to generate phylogenetic trees and perform principal coordinate analysis in real time from variant call format (VCF) and associated metadata files. Allele frequency map, geographical map of isolates, Tajima's D metric, single nucleotide polymorphism density, GC and variation density are also available for visualization in real time. We demonstrate the utility of SVAMP in tracking a methicillin-resistant Staphylococcus aureus outbreak from published next-generation sequencing data across 15 countries. We also demonstrate the scalability and accuracy of our software on 245 Plasmodium falciparum malaria isolates from three continents. AVAILABILITY AND IMPLEMENTATION: The Qt/C++ software code, binaries, user manual and example datasets are available at http://cbrc.kaust.edu.sa/svamp CONTACT: [email protected] or [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Targeted disruption of py235ebp-1: Invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein

    Get PDF
    Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression

    Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS)

    Get PDF
    Background: The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cir s and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s) of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required. Results: The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages. Conclusions: In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family A and B protein functions, including their contribution to antigenic variation and immune evasion

    Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response.

    Get PDF
    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.This work was funded by a Cambridge- KAUST Academic Excellence Alliance (AEA2) project grant to AP and CVA was supported by a Cambridge Overseas Trust Studentship. JA was supported by a Darwin Trust of Edinburgh. WJP was supported by a Medical Research Council. FMJ was supported by Royal Society Research. EASIH is supported by Cambridge NIHR-BRC. The Wellcome Trust Centre for Human Genetics is funded by Wellcome Trust grant reference 090532/Z/09/Z and MRC hub grant G0900747 91070. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.his is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.ppat.100476

    miR-34c-3p Regulates Protein Kinase A Activity Independent of cAMP by Dicing prkar2b Transcripts in Theileria annulata-Infected Leukocytes

    Get PDF
    MicroRNAs (miRNAs) are small noncoding RNAs that can play critical roles in regulating various cellular processes, including during many parasitic infections. Here, we report a regulatory role for miR-34c-3p in cAMP-independent regulation of host cell protein kinase A (PKA) activity in Theileria annulata-infected bovine leukocytes. We identified prkar2b (cAMP-dependent protein kinase A type II-beta regulatory subunit) as a novel miR-34c-3p target gene and demonstrate how infection-induced upregulation of miR-34c-3p repressed PRKAR2B expression to increase PKA activity. As a result, the disseminating tumorlike phenotype of T. annulata-transformed macrophages is enhanced. Finally, we extend our observations to Plasmodium falciparum-parasitized red blood cells, where infection-induced augmentation in miR-34c-3p levels led to a drop in the amount of prkar2b mRNA and increased PKA activity. Collectively, our findings represent a novel cAMP-independent way of regulating host cell PKA activity in infections by Theileria and Plasmodium parasites. IMPORTANCE Small microRNA levels are altered in many diseases, including those caused by parasites. Here, we describe how infection by two important animal and human parasites, Theileria annulata and Plasmodium falciparum, induce changes in infected host cell miR-34c-3p levels to regulate host cell PKA kinase activity by targeting mammalian prkar2b. Infection-induced changes in miR-34c-3p levels provide a novel epigenetic mechanism for regulating host cell PKA activity independent of fluxes in cAMP to both aggravate tumor dissemination and improve parasite fitness

    Differential var gene expression in the organs of patients dying of falciparum malaria

    Get PDF
    Sequestration of parasitized erythrocytes in the microcirculation of tissues is thought to be important in the pathogenesis of severe falciparum malaria. A major variant surface antigen, var/Plasmodium falciparum erythrocyte membrane protein 1, expressed on the surface of the infected erythrocyte, mediates cytoadherence to vascular endothelium. To address the question of tissue-specific accumulation of variant types, we used the unique resource generated by the clinicopathological study of fatal paediatric malaria in Blantyre, Malawi, to analyse var gene transcription in patients dying with falciparum malaria. Despite up to 102 different var genes being expressed by P. falciparum populations in a single host, only one to two of these genes were expressed at high levels in the brains and hearts of these patients. These major var types differed between organs. However, identical var types were expressed in the brains of multiple patients from a single malaria season. These results provide the first evidence of organ-specific accumulation of P. falciparum variant types and suggest that parasitized erythrocytes can exhibit preferential binding in the body, supporting the hypothesis of cytoadherence-linked pathogenesis

    A proportion of mutations fixed in the genomes of in vitro selected isogenic drug-resistant Mycobacterium tuberculosis mutants can be detected as minority variants in the parent culture.

    Get PDF
    We studied genomic variation in a previously selected collection of isogenic Mycobacterium tuberculosis laboratory strains subjected to one or two rounds of antibiotic selection. Whole genome sequencing analysis identified eleven single, unique mutations (four synonymous, six non-synonymous, one intergenic), in addition to drug resistance-conferring mutations, that were fixed in the genomes of six monoresistant strains. Eight loci, present as minority variants (five non-synonymous, three synonymous) in the genome of the susceptible parent strain, became fixed in the genomes of multiple daughter strains. None of these mutations are known to be involved with drug resistance. Our results confirm previously observed genomic stability for M. tuberculosis, although the parent strain had accumulated allelic variants at multiple locations in an antibiotic-free in vitro environment. It is therefore likely to assume that these so-called hitchhiking mutations were co-selected and fixed in multiple daughter strains during antibiotic selection. The presence of multiple allelic variations, accumulated under non-selective conditions, which become fixed during subsequent selective steps, deserves attention. The wider availability of 'deep' sequencing methods could help to detect multiple bacterial (sub)populations within patients with high resolution and would therefore be useful in assisting in the detailed investigation of transmission chains

    Discovering, Characterizing, and Applying Acyl Homoserine Lactone-Quenching Enzymes to Mitigate Microbe-Associated Problems Under Saline Conditions

    Get PDF
    Quorum quenching (QQ) is proposed as a new strategy for mitigating microbe-associated problems (e.g., fouling, biocorrosion). However, most QQ agents reported to date have not been evaluated for their quenching efficacies under conditions representative of seawater desalination plants, cooling towers or marine aquaculture. In this study, bacterial strains were isolated from Saudi Arabian coastal environments and screened for acyl homoserine lactone (AHL)-quenching activities. Five AHL quenching bacterial isolates from the genera Pseudoalteromonas, Pontibacillus, and Altererythrobacter exhibited high AHL-quenching activity at a salinity level of 58 g/L and a pH of 7.8 at 50Ā°C. This result demonstrates the potential use of these QQ bacteria in mitigating microbe-associated problems under saline and alkaline conditions at high (>37Ā°C) temperatures. Further characterizations of the QQ efficacies revealed two bacterial isolates, namely, Pseudoalteromonas sp. L11 and Altererythrobacter sp. S1-5, which could possess enzymatic QQ activity. The genome sequences of L11 and S1-5 with a homologous screening against reported AHL quenching genes suggest the existence of four possible QQ coding genes in each strain. Specifically, two novel AHL enzymes, AiiAS1-5 and EstS1-5 from Altererythrobacter sp. S1-5, both contain signal peptides and exhibit QQ activity over a broad range of pH, salinity, and temperature values. In particular, AiiAS1-5 demonstrated activity against a wide spectrum of AHL molecules. When tested against three bacterial species, namely, Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio alginolyticus, AiiAS1-5 was able to inhibit the motility of all three species under saline conditions. The biofilm formation associated with P. aeruginosa was also significantly inhibited by AiiAS1-5. AiiAS1-5 also reduced the quorum sensing-mediated virulence traits of A. hydrophila, P. aeruginosa, and V. alginolyticus during the mid and late exponential phases of cell growth. The enzyme did not impose any detrimental effects on cell growth, suggesting a lower potential for the target bacterium to develop resistance over long-term exposure. Overall, this study suggested that some QQ enzymes obtained from the bacteria that inhabit saline environments under high temperatures have potential applications in the mitigation of microbe-associated problems
    • ā€¦
    corecore